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WEAK TURBULENCE OF CAPILLARY WAVES
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In recent years the theory of weak turbulence, i.e. the stochastic
theory of nonlinear waves [1, 2], has been intensively developed. In
the theory of weak turbulence nonlinearity of waves is assumed to be
small; this enables us, using the hypothesis of the random nature of
the phases of individual waves, to obtain the kinetic equation for the
mean squares of the wave aplitudes,

In many cases of weak turbulence a situation arises where damping
is considerable in the region of large wave numbers and is separated
from the region where the basic energy of the waves is concentrated
(as a result either of pumping or of the initial conditions) with a wide
region of transparency. In[3,4] the hypothesis was stated that weak
turbulence in these cases is completely analogous to hydrodynamic
turbulence for large Reynolds numbers in the sense that in the region
of transparency a universal spectrum is established which is determined
only by the flow of energy into the region of large wave numbers. The
spectrum of hydrodynamic turbulence gk ~ k™*/3 was obtained by A.
N. Kolmogorov and A. M. Obukhov [5,6] from dimensional consider-
ations. In the case of weak turbulence the spectrum is obtained as an
exact solution of the stationary kinetic equation.

Below the case of weak turbulence of capillary waves on the sur-
face of a liquid is considered.

A kinetic equation is obtained for capillary waves. It is significant
that in this case the basic contribution to interaction is provided by the
process of the decomposition of a wave into two and by the process of
two waves merging into one.

It is shown that the collision term of the kinetic equation vanishes
with the solution ey ~ k 1, Arguments are advanced in favor of the
fact that this solution can be interpreted as a universal spectrum in
the region of transparency.

1. The kinetic equation. As is known, the law of
wave dispersion on the surface of an infinitely deep
liquid has the form wy = (ak® + gk) 1/2, where « is the
coefficient of surface tension. The density of the
liquid is taken as equal to unity.

The case k > g/ is considered. Here the effect of
gravitational forces can be neglected, and the spec-
trum assumes the form wg = (011{3)1 2

Vibrations of the surface of a liquid, without vis—
cosity taken into account, are described by the follow~
ing system of equations (subsequently viscosity will be
taken into account phenomenologically):
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Here ®(x,y,z,t) is the velocity potential; n(x, vy, t)
is the deviation of the surface from equilibrium. The
z axis is directed away from the liquid. Without loss
of generality we can set the pressure equal to zero.
This equation has an integral of motion: the energy of
the waves, which with an accuracytoterms of the third
order with respect to n(x,y, t) has the form
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Let us turn to the Fourier transforms of x and y in
Egs. (1.1), using the Laplace equation and the boun-
dary condition. Here we make use of the smallness of
nonlinearity, retaining in the Fourier series terms up
to the second order of smallness with respect to the
amplitude of vibrations

Iy P
Nt

= § 00) — 1] [t [1 07,00,

+ ak™n, =

ov,
t

= §100aks) -+ [ | e 13 ¥ i e s
\P.(x1 yl t)=¢)(zv y1 Z: t)'z:n' (1'2)

1t is convenient to turn to the new variables ay and
a*y, the complex amplitudes of waves
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Here gy, a.)* are normed in such a way that
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where g is the quadratic part of the wave energy.
The equation for capillary waves in terms of these
variables has the form
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We note that Vik ks and Ukgk ke are homogeneous
functions of degree 9/4, satisfying the symmetry con-
ditions

Vi = Vitahoo Uie = Ubratr = Unions

The functions V and U depend only on the moduli of
their arguments. We note that capillary waves exhibit
a "split law of dispersion® [7], i.e., the conditions

@, = Wy, + O, k=k; +ksy
can be satisfied simultaneously.

1t follows from this fact that 2 monochromatic cap-
illary wave with the wave vector k is unstable relative
to simultaneous excitation of a wave pair with the wave
vectors ky, k, (split instability).

Let us proceed to a statistical description of the
vibrations. We assume that the system of waves is
statistically homogeneous and, furthermore, that the
phases of the individual vibrations are completely
chaotic. In accordance with the established termin-
ology (1, 2] we call such a condition weak turbulence of
waves. To describe turbulence, we can obtain a kine-
tic equation for ny = lak!? in the manner of A. A.
Galeev and V. 1. Karpman [8]

ony | dt = St (n, n) — 2vk?n,, (1.6)
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The term 2vk’n, where v is the coefficient of vis-
cosity, is introduced into the kinetic equation. This
term describes the viscous damping of waves [9].

According to formula (1.3), nk is associated with
the spectral energy density by the relation gk = wknk.
The quantity nk can be interpreted as the density of
the wave number in k-space [1—4].

Equation (1.7) exhibits the law of the conservation
of energy

%Smknk dk + 2S Vit dk = 0. (1.8)

2. Solution of the kinetic equation. Let us consider

the equation :

St{n, ny =0, {2.1)

We shall seek cylindrically symmetric solutions of
this equation. We make use of the fact that the coeffi-
cient function is independent of the angles, and carry
out an averaging process with respect to the angles in
Eq. (2.1). For this we represent the é-function of the
wave vectors in the form

Opak sk, = Sei(l‘, bkt dp |

Having integrated Eq. (2.1) with respect to the
angles between the vectors r and k, r and k;, r and ky,

we proceed to integrate the vectors k; and k, with re-
spect to the moduli,where the 6-function of the wave
numbers is replaced by the expression
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Here A is the area of the triangle formed by the
vectors k, k; and k.
After this in Eq. (2.1) we go over to the variables
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and to preserve symmetry of the kernel we multiply
the equation by the quantity w!/3.

After integrating with respect to the variable w, we
obtain
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Here P,y 15 2 homogeneous positive definite
function of degree 8/3
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We shall seek the solution of Eq. (2.2) in the form
n, = Aw®, where A is an arbitrary constant, while s
is an unknown quantity.

We carry out substitution of the variables in the
second integral of Eq. (2.2) in accordance with the

formulas
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The function, owing to its homogeneity and sym-
metry (see (1.6)) is transformed as follows:

P, w0 = Powjo,, (@) o for, oo o=
—(w/oy) " P, ey, @y

It is now seen that after such a substitution two in-
tegrals are turned into one, while the integrand is
easily factorized.

The equation for the unknown quantity s thus has
the form
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It is obvious that the integrand vanishes for values
of s equal to —1 and —17/6.
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Owing to the positive definiteness of the function P,
Eq. (2.1) has no solutions of other powers.

The solution nw(‘) = const/w, i.e., the Rayleigh-
Jeans distribution, corresponds to the first of the
equations in (2.2).

The solution ny,(? = const /ew!/16 corresponds to
the second root.

In k-space the distributions

nY = const k77, n,® = const £~
correspond to these solutions; in cylindrical normal-
ization thig gives

&, = const k, g = const K"
for the spectral density.

For this solution to have a physical meaning, it is
necessary for the integrals in Eq. (2.7) to converge.
Let us first consider the convergence in the region of
small k. _

We note that in the first term of Eq. (2.2) integra-
tion over the region w — w; K w gives the same con-
tribution as integration over the region w; < w. Tak-
ing this into consideration, we collect all the terms
passing to infinity as w{ — 0. We obtain

2 3 {Pml, W1, B=—0 [nmnw—m,_‘ nmnmll +
+ Pm-f-(nx,m, Wy [nmlnm»ym,- nmnm,]} dml - (2-4)

Taking into account the asymptotic property of (2.3),
these terms have the order

1 on, ¢
e S eo,0,* dooy . (2.5)
Hence it follows that integrals in Eq. (2.2) con-
verge for both of the solutions obtained here as w; —
— 0. Let us consider the convergence as w; — .
In this case the terms
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are the most critical.
It is obvious that in this limiting case the integrals
in the equation converge for both solutions.

3. A physical interpretation of the solutions. Let us consider the
problem concemed with the damping of capillary waves. We estimate
the orders of various terms in Eq. (1.7). Let 7 be the characteristic
damping time. The term 3n/0t has the order n/r; the term St(n, n)
then has the order ¥2n2k?/ wy ~ n2/k5 and for sufficiently large k it
is much larger than the term 3n/8t. Thus the term 8n/dt is significant
only for small k.

We denote the influence boundary of the term 9n/8t by a. Further-
more, it is clear that viscosity has an effect only for sufficiently large
k. We denote the viscosity influence boundary by b. We consider the
case b > a, We attempt to approximate the solution of Eq. (1.7) in
the region ¢ < k < b with the aid of the exact solutions of Eq. (2.1).
Let us first consider the Rayleigh-Jeans distribution.

Owing to the convergence of the integrals in Eq. (2.1), for the
Rayleigh-Jeans distribution the principal contribution to the integral

is determined by the region k; ~ k and has the order T?k?, On the
other hand, the term vk?ny has the order vTk'/%. Hence we see that
viscosity cannot lead to cutoff of the Rayleigh-Jeans distribution for
large k and b = =, But since the total energy for the Rayleigh-Jeans
distribution diverges for large k, this means that the Rayleigh-Jeans
solution cannot be realized in the given problem.

Let us now consider the solution nk = ck ~17/4, The order of the
collision term for this solution is czk'7/2, while the order of the vis-
cous term is vck™ /4, Hence the boundary of influence for the viscous
term is b ~ (c/p)4/5,

It is natural to expect that the solution is rapidly damped for k > b.

The solution ny = ck~1T/4 rapidly diminishes for k > a; therefore
the principal part of the energy is included in the region k ~ @, where
nonsteadiness is significant. Let the solution in this region have the
order ng. From the joining condition on the boundary of the region
containing the energy we have

_17/
ng~ca 4.

Thus the true solution differs considerably from the solution nk =
= ck™1/4 in the regions k<< ¢ and k >b. Integration in the collision

_ term is carried out over the entire space of wave numbers including

these regions, Here the contribution of the region a <« k<< b has the
order czk'7/z(a/k)13/4.

From formulas (2.5) and (2.6) we can estimate the contributions of
the regions k< ¢ and k2 b. They equal Fk ™’ Z(a/k)ls/4 and cfk7/2 -
© (k/b A, respectively. It is obvious that for a « k « b these con-
tributions are negligibly small. )

Let us now calculate the quantity of energy dissipated per unit
time. This quantity is given by formula (1.8). The principal contri-
bution to the integral i3 determined by the upper limit

b
p~c¢ Ok gk a2, (3.2)
kl7/4

We find that the quantity of energy dissipated or, what is the same,
the energy flow into the region of large k does not depend on the
value of the viscosity coefficient. The solution in the region @ « k «
« b can be rewritten to the form

Ny~ p‘/ oy~ s (3.3)

Hence

no ~ plf’d,—xl‘u_ﬂ/‘ . (3.4)

From the kinetic equation (1.7) we can establish that the energy
flux p is proportional to n?, i.e., n~ pi/z, It is easy to see that
ny ~ pt/2 a 1/4x 17/ 5 the only power function which satisfies this
condition with respect to dimensionality. The total wave energy has
the order

&~ 0ang ~ ol (3.5)

From the law of the conservation of energy we have

e/t~ p . (3.6)
From formulas (3.3)—(3.6) we find that
1/7T~ noad ~nee /o, (8.7)

Knowing r, it is easy to establish that the terms 8n/0t and St(n, n)
are indeed comparable for k ~ a. We note that the kinetic equation
is applicable only for small nonlinearity, when &/a < 1. Formula
(3.6) can be rewritten to the form n,/r ~ &n,/0t ~ n%a®,

Hence n ~ nof/t, i.e., n decreases in inverse proportion to time.
Let us find the boundary of viscous damping

b~ (o /Yo mglsf v,

The criterion of existence for the region ¢ « k<« b leads to the
condition b » ¢, which, as can be easily confirmed, coincides with
the condition rva?/> 1. This is to say, it coincides with the condi-~
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tion that the decrement of the nonlinear damping is much larger than
the decrement of viscous damping. Hence we obtain the final criterion
of theory applicability va?/w, < e/a <« 1,

The constructed pattern of weak turbulence in capillary waves has
much in common with the pattern of turbulence for an incompressible
liquid in the case of large Reynolds numbers. In both cases the wave-
number space can be divided into three regions: the region containing
energy, the intermediate (inertial) region, and the damping region. At
the same time the spectrum of energy in the region containing energy
and in the intermediate region does not depend on the coefficient of
viscosity (the coefficient of viscosity determines only the upper boun-
dary of the intermediate region). In both cases the spectrum of energy
in the intermediate region is determined by only a single quantity, the
energy flow from the region containing energy. For hydrodynamic tur-
bulence this enables us to find this spectrum ey ~ k™/%, using dimen-
sional considerations. Turbulence of capillary waves contains the addi-~
tional dimensional parameter a. This does not allow us directly to use
the dimensional considerations, but after obtaining the kinetic equation
we can establish that the energy flow is proportional to the square of
the wave energy. This allows us to construct the expression gk ~
~arth pl/z k~17/4 which turns out to be the exact solution of the
kinetic equation.,

In the theory of hydrodynamic turbulence the pattern described
above is based on the hypothesis of the local character of turbulence,
i.e., on the assumption that only dimensions of the same order inter-
act intensively with one another. This hypothesis for capillary waves
is factually confirmed by relations (3.2). We further note that the
problem of the stability of the turbulence pattemn set up here remains
unresolved.

In conclusion, the authors thank R. Z. Sagdeev for his contribution
to the work.
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